References

Altona, C. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
Ashida, T. (1973). FMLS. The Universal Crystallographic Computing System-Osaka. The Computation Center, Osaka Univ., Japan.
Delbaere, L. T. \& James, M. N. G. (1973). Acta Cryst. B29, 2905-2912.
Holỳ, A. (1974). Nucleic Acids Res. 1, 289-298.
Holý, A. (1975). Czech. Chem. Commun. 40, 738-752.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Lin, G. H.-Y., Sundaralingam, M. \& Arora, S. K. (1971). J. Am. Chem. Soc. 93, 1235-1241.
Lo, A., Shefter, E. \& Cochran, T. G. (1975). J. Pharm. Sci. 64, 1707-1710.
Low, J. N. (1983). A cta Cryst. C39, 796-798.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO78. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Srikrishnan, T., Parthasarathy, R., De, N. C. \& Chheda, G. B. (1983). Acta Cryst. C 39, 1441-1445.

Suck, D. \& Saenger, W. (1973). Acta Cryst. B29, 1323-1330.

Acta Cryst. (1986). C42, 440-442

Structure of 1-(4-Chloro-2-fluorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)3 -pentanone

By S. K. Branch*
School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7A Y, England
and I. W. Nowell
Department of Chemistry, Sheffield City Polytechnic, Pond Street, Sheffield S1 1WB, England

(Received 11 January 1985; accepted 19 August 1985)

Abstract

C}_{15} \mathrm{H}_{17} \mathrm{ClFN}_{3} \mathrm{O}, M_{r}=309.8\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=19.813$ (8),$\quad b=13.699$ (6), $\quad c=$ 5.777 (3) $\dot{A}, \quad V=1568.0 \AA^{3}, \quad Z=4, \quad D_{m}=1.29$ (2), $D_{x}=1.31 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $0.213 \mathrm{~mm}^{-1}, F(000)=648$, room temperature, final $R=0.053$ for 1003 reflections classed as observed. C atom 1 of the phenyl ring and C atoms 1 to 4 of the pentanone function adopt an extended ' W ' conformation with the atoms essentially coplanar. The triazolyl ring, which shows significant delocalization [$\mathrm{N}-\mathrm{N}$ bond length 1.357 (9) $\AA ; \mathrm{C}-\mathrm{N}$ 1.324$1.337 \AA$], and the chlorofluorophenyl ring are twisted by $86(1)$ and $58(1)^{\circ}$, respectively, out of this plane. The exocyclic angles of the triazolyl ring are very asymmetric with $\mathrm{C}-\mathrm{N}-\mathrm{C}\left[130.6(7)^{\circ}\right]$ significantly larger than $\mathrm{C}-\mathrm{N}-\mathrm{N}\left[119.1(6)^{\circ}\right]$. The F atom is disordered being distributed ($80,20 \%$ occupancy) between positions 2 and 6 in the phenyl ring. The title compound was recrystallized from a racemic mixture but the absolute configuration [($2 S$)-enantiomer] of the molecules in the crystal under investigation was established by comparison of $w R$ values for the determined and the inverted structure.

[^0]0108-2701/86/040440-03\$01.50

Introduction. The title compound is one of a group of azolylmethane fungicides (Balasubramanyan \& Shephard, 1975) which are related to the well established systemic fungicide triadimefon (Martin \& Morris, 1979), whose structure has been reported previously (Nowell, Walker \& Anderson, 1982). We have determined the structure of the title compound to establish its solid-state conformation as part of a programme investigating the relationship between conformation and biological activity in this class of compounds. A preliminary description of this structure has been published (Anderson, Branch, Loeffler, Mann, Nowell \& Walker, 1984).

Experimental. Recrystallization from ethanol:water (2:1); D_{m} by flotation in benzene/ CCl_{4}; crystal, clear colourless needle, approximate dimensions $0.38 \times$ $0.24 \times 0.16 \mathrm{~mm}$, mounted about crystallographic c axis; Stoe Stadi- 2 two-circle diffractometer, Mo $K \alpha$ radiation; Lorentz, polarization but no absorption corrections applied; one standard reflection monitored for each layer collected, intensity variation $<4 \%$; 1890 reflections up to $\theta=27.5^{\circ}$; index ranges $h 0$ to $24, k 0$ to $17, l 0$ to $6 ; 1829$ independent reflections of which 1003 with $I \geq 2.0 \sigma(I)$ con© 1986 International Union of Crystallography
sidered observed; structure solved by multisolution direct methods; block-diagonal least-squares refinement of atomic coordinates and anisotropic temperature factors for all non- H atoms except F , and isotropic temperature factors for all H and F atoms, minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}$ with $w=0.9736 /\left[\sigma^{2}\left(F_{o}\right)+0.0002\left(F_{o}\right)^{2}\right] ;$ all H atoms included in positions calculated from the geometry of the molecule ($\mathrm{C}-\mathrm{H} 1.08 \AA$); max. (Δ / σ) $=0.13 ; \min . \Delta \rho=-0.17$, max. $\Delta \rho=0.26 \mathrm{e}^{\AA^{-3}}$; no correction for secondary extinction; scattering factors calculated from an analytical approximation (International Tables for X-ray Crystallography, 1974); computer programs: SHELX76 (Sheldrick, 1976), PLUTO (Motherwell \& Clegg, 1978). During the early stages of refinement, the electron density at $H(76)$ was higher than expected and refinement of a common temperature factor for the phenyl H atoms led to a very low value. Thus, disorder of the F atom between $C(72)$ and $C(76)$ was indicated and subsequent refinement revealed relative populations at each site of 80 (1) and 20 (1)\% respectively. A final value of $U=0.055$ (18) \AA^{2} was refined for $\mathrm{H}(5)$ while common isotropic temperature factors applied to the methyl, methylene and triazolyl H atoms, to $\mathrm{H}(73)$ and $\mathrm{H}(75)$, and to the disordered F atom at $\mathrm{C}(72)$ and $\mathrm{C}(76)$ refined to final values of $U=0.183$ (17), 0.050 (11), $0.116(21), 0.137(24)$ and 0.071 (1) \AA^{2} respectively. Although the title compound was recrystallized from a racemic mixture, the noncentrosymmetric space group indicates that the crystal examined contains only one of the two possible enantiomeric forms $[(2 R)$ - or $(2 S)$ configuration]. Equal refinement of the atomic coordinates representing the R - and S-enantiomers led to final values of $w R=0.0522$ and 0.0519 respectively. Application of the R-factor-ratio test (Hamilton, 1965) gave $\mathscr{R}=1.0058$, greater than the value $\mathscr{R}_{1.808 .0 .005}$ $=1.0042$ interpolated from the Hamilton tables for the 0.005 significance level for a one-dimensional hypothesis and 808 degrees of freedom. Hence the probability of the R configuration being correct can be rejected with a confidence level of 99.5%. Thus, application of the statistical test indicates the S enantiomer to be present although we note that the confidence level may be overestimated (Rogers, 1981).

Discussion. The final atomic coordinates and equivalent isotropic thermal parameters are given in Table 1;* bond distances and angles in Table 2 and the atomic numbering scheme in Fig. 1. The molecule adopts a conformation such that the carbon chain $C(31)-$ $C(4)-C(5)-C(6)-C(71)$ is extended and the atoms are

[^1]Table 1. Fractional positional parameters $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters with e.s.d.'s in parentheses
$B_{\text {eq }}$ values have been calculated by reference to Willis \& Pryor (1975).

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cl	3080 (1)	2926 (1)	5102 (6)	8.3 (1)
N(1)	-52 (2)	3576 (3)	1354 (12)	3.6 (2)
$\mathrm{N}(2)$	-117 (3)	3021 (4)	-580 (11)	4.4 (3)
N(3)	-175 (4)	2088 (4)	2620 (18)	7.1 (4)
0	-350 (2)	5263 (4)	-2431(12)	6.1 (3)
C(1)	-88 (4)	3021 (6)	3228 (16)	5.4 (4)
C(2)	-181 (4)	2138 (5)	328 (20)	5.5 (4)
C(31)	-1228 (3)	5149 (4)	372 (16)	4.6 (4)
C(32)	-1284 (4)	5217 (12)	2859 (21)	12.5 (9)
C(33)	-1519 (4)	6069 (7)	-824 (24)	9.7 (7)
C(34)	-1616 (3)	4276 (7)	-537 (28)	10.3 (7)
C(4)	-495 (3)	5045 (4)	-493 (16)	3.9 (3)
C(5)	58 (2)	4638 (3)	1110 (13)	3.4 (3)
C(6)	761 (2)	4843 (4)	55 (15)	4.0 (3)
C(71)	1323 (2)	4335 (4)	1384 (15)	4.1 (3)
C(72)	1557 (3)	4679 (4)	3445 (14)	4.4 (3)
C(73)	2095 (3)	4264 (4)	4646 (16)	4.9 (3)
C(74)	2404 (3)	3457 (4)	3650 (18)	5.5 (4)
C(75)	2187 (3)	3080 (5)	1608 (18)	5.7 (4)
C(76)	1646 (3)	3516 (4)	510 (15)	4.7 (3)
F(72)*	1268 (2)	5446 (3)	4446 (10)	
$\mathrm{F}(76)^{*}$	1448 (9)	3140 (13)	-1247 (45)	

* Disordered F atom given common isotropic temperature factor [final value $U=0.071$ (1) \AA^{2}]; $\mathrm{F}(72), 80(1) \%$ occupancy; $\mathrm{F}(76)$, 20 (1)\% occupancy.

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{N}(1)-\mathrm{N}(2)$	1.357 (9)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.546 (8)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.324 (9)	C(6)-C(71)	1.522 (8)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.326 (16)	C(71)-C(72)	1.361 (11)
$\mathrm{N}(3)-\mathrm{C}(1)$	1.337 (10)	C(72)-F(72)*	1.330 (8)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.324 (11)	$\mathrm{C}(72)-\mathrm{C}(73)$	1.393 (9)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.478 (6)	C(73)-C(74)	1.388 (9)
C(31)-C(32)	1.444 (15)	$\mathrm{C}(74)-\mathrm{Cl}$	1.739 (7)
C(31)-C(33)	1.549 (12)	C(74)-C(75)	1.357 (13)
C(31)-C(34)	1.515 (12)	C(75)-C(76)	1.380 (10)
$\mathrm{C}(31)-\mathrm{C}(4)$	1.542 (9)	$\mathrm{C}(76)-\mathrm{F}(76)^{*}$	1.204 (25)
C(4)-O	$1 \cdot 194$ (11)	$\mathrm{C}(76)-\mathrm{C}(71)$	1.386 (8)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.540 (9)		
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	110.3 (5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	108.0 (5)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$130 \cdot 6$ (7)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$110 \cdot 5$ (4)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	119.1 (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(71)$	112.2 (6)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	101.2 (7)	$\mathrm{C}(6)-\mathrm{C}(71)-\mathrm{C}(72)$	122.1 (5)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	116.2 (7)	C (6)-C(71)-C(76)	121.6 (7)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(1)$	102.4 (7)	C(72)-C(71)-C(76)	116.2 (6)
$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(1)$	109.9 (8)	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{F}(72)^{*}$	120.5 (6)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(33)$	111.2 (9)	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	123.7 (6)
C(32)-C(31)-C(34)	110.9 (9)	$\mathrm{F}(72)-\mathrm{C}(72)-\mathrm{C}(73)^{*}$	$115 \cdot 8$ (7)
C(33)-C(31)-C(34)	107.3 (7)	C(72)-C(73)-C(74)	$117 \cdot 1$ (8)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(4)$	113.7 (6)	$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{Cl}$	118.2 (7)
C(33)-C(31)-C(4)	$106 \cdot 3$ (6)	C(73)-C(74)-C(75)	121.6 (6)
$\mathrm{C}(34)-\mathrm{C}(31)-\mathrm{C}(4)$	$107 \cdot 0$ (6)	$\mathrm{Cl}-\mathrm{C}(74)-\mathrm{C}(75)$	$120 \cdot 3$ (5)
C(31)-C(4)-O	$120 \cdot 5$ (7)	C(74)-C(75)-C(76)	118.7 (6)
$\mathrm{C}(31)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 6$ (7)	$\mathrm{C}(75)-\mathrm{C}(76)-\mathrm{F}(76)^{*}$	117.1 (10)
$\mathrm{O}-\mathrm{C}(4)-\mathrm{C}(5)$	118.9 (5)	$\mathrm{F}(76)-\mathrm{C}(76)-\mathrm{C}(71)^{*}$	120.1 (10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	109.8 (6)	$\mathrm{C}(75)-\mathrm{C}(76)-\mathrm{C}(71)$	122.7 (8)
* Disordered F atom.			

Fig. 1. The conformation of the molecuie ($2 S$-enantiomer depicted). The F atom is disordered between positions 2 and 6 of the phenyl ring ($80,20 \%$ occupancy respectively).
essentially coplanar. It is likely that this ' W ' conformation minimizes steric interactions between the three most bulky functional groups in the molecule, namely the tert-butyl, halophenyl and triazolyl groups. The triazolyl and halophenyl rings are also arranged to minimize intramolecular interactions, being inclined at angles of $85.5(10)$ and $57.8(10)^{\circ}$ respectively to the plane containing C atoms $\mathrm{C}(31), \mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$ and $\mathrm{C}(71)$ and at an angle of $55.3(10)^{\circ}$ to each other. The triazolyl ring is orientated such that $\mathrm{C}(1)$ and $\mathrm{H}(5)$ are almost eclipsed, the torsion angle $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-$ $\mathrm{H}(5)$ being $8.4(11)^{\circ}$.

All four $\mathrm{C}-\mathrm{N}$ distances and the $\mathrm{N}-\mathrm{N}$ distance in the heterocyclic ring are intermediate between the expected single-bond lengths (1.47 and $1.45 \AA$ respectively) and double-bond lengths (1.265 and $1.2 \AA$ respectively) and the three atoms bonded to $\mathrm{N}(1)$ are coplanar with it. These data indicate extensive delocalization in the triazolyl ring. The exocyclic angles at $\mathrm{N}(1)$ show
considerable asymmetry, $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ being significantly larger than $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{N}(2)$, and, as previously noted (Branch \& Nowell, 1985), this asymmetry appears to be characteristic of the triazolyl ring itself rather than due to the influence of any intra- or intermolecular interactions.

We thank the SERC for an equipment grant and computing facilities (IWN), the SERC and Imperial Chemical Industries PLC for a CASE award (SKB) and Dr N. H. Anderson (Long Ashton Research Station, formerly at ICI Plant Protection Division) for helpful discussions.

References

anderson, N. H., Branch, S. K., Loeffler, R. S. T., Mann, B. E., Nowell, I. W. \& Walker, P. E. (1984). Pestic. Sci. 15, 310-316.
Balasubramanyan, S. \& Shephard, M. C. (1975). UK patent 1535777.

Branch, S. K. \& Nowell, I. W. (1985). Acta Cryst. C41, 594-597.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Martin, T. J. \& Morris, D. B. (1979). Pflanzenschutz Nachr. Am. Ed. 32, 31-79.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for the production of crystal and molecular illustrations. Crystallographic Data Centre, Cambridge, England.
Nowell, I. W., Walker, P. E. \& Anderson, N. H. (1982). Acta Cryst. B38, 1857-1859.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography. Cambridge Univ. Press.

Acta Cryst. (1986). C42, 442-445

Structure and Absolute Configuration of a Penam Derivative

By Angelo Bedeschi, Francine Bélanger-Gariépy, Stephen Hanessian and François Brisse*
Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, Canada H3C 3V1

(Received 2 July 1985; accepted 11 November 1985)

Abstract

Nitrobenzyl 6-(1-tert-butyldimethylsiloxy-ethyl)-3-methylthio-3-nitromethyl-7-oxo-4-thia-1-aza-bicyclo[3.2.0]heptane-2-carboxylate, $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}$, $M_{r}=571.75$, monoclinic, $P 2_{1}, a=8.6734$ (16), $b=$ 10.420 (7), $\quad c=16.785$ (4) $\AA, \quad \beta=93.75$ (2) ${ }^{\circ}, \quad V=$ $1513.7 \AA^{3}, \quad Z=2, \quad D_{x}=1.254 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=$

[^2]0108-2701/86/040442-04\$01.50
$1.54178 \AA, \mu=2.33 \mathrm{~mm}^{-1}, F(000)=604, T=293 \mathrm{~K}$, $R=0.061$ for 1548 observed reflections. The absolute configuration was established. The main feature of this molecule is the bicyclic system related to that of penicillin. The five-membered ring, in the envelope conformation, shows a strong distortion when compared to carpetimycin or thienamycin. The fourmembered ring is not planar and has torsion angles of $\pm 10^{\circ}$ as in the other two related compounds.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure amplitudes, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42445 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

